#### The Implications of Uncertain NO2 + OH for Ozone and Precursors

#### Barron H. Henderson<sup>1</sup>, Rob W. Pinder<sup>1</sup>, James Crooks<sup>2</sup>, Farhan Akhtar<sup>1</sup>, Havala O.T. Pye<sup>1</sup>, William Vizuete<sup>2</sup>

<sup>1</sup>Atmospheric Modeling and Analysis Division, U.S. EPA
<sup>2</sup>Biostatistics and Bioinformatics Research Core, U.S. EPA
<sup>3</sup>Dept. of Environmental Science and Engineering UNC Chapel Hill

October 26, 2011



barronh@gmail.com



### Ozone Overview

- Secondary chemical: not emitted, but formed
- National Ambient Air Quality Standard criteria pollutant
- Third largest positive short-lived climate forcer



### **Ozone Chemical Formation Primer**



### **Ozone Chemical Formation Primer**



### $NO_2 + HO^- \rightarrow HNO_3$ : Important, Uncertain



JPL's recommended rate is 11% below IUPAC's

### $NO_2 + HO^- \rightarrow HNO_3$ : Important, Uncertain



- JPL's recommended rate is 11% below IUPAC's
- rate from latest lab data (all at 298 K) is 13% below JPL

### $NO_2 + HO^- \rightarrow HNO_3$ : Important, Uncertain



- JPL's recommended rate is 11% below IUPAC's
- rate from latest lab data (all at 298 K) is 13% below JPL

### Modeling framework

- Simulates air parcels post-convection event, identified by NO<sub>x</sub>/HNO<sub>3</sub>
  - Initial conditions from aircraft measurements
  - Stochastic model of subsidence following convection
  - Mixing with background air
  - ISORROPIA for aerosol partitioning
  - Heterogeneous reactions for N2O5, HO2, NO2, etc.
  - Gas-phase chemistry: **GEOS-Chem** and Carbon Bond '05
- Results: under-predicts NO<sub>2</sub> and over-predicts oxidation rate

Henderson et al., ACP 2011

### Constraining $K(NO_2 + OH)$ from observations

 Uncertainty range from Jet Propulsion Laboratory Kinetic Data Evaluation 2011



### Constraining $K(NO_2 + OH)$ from observations • $\mathbf{p} = p(K_{-3\sigma}), ..., p(K_{3\sigma})$



#### Constraining $K(NO_2 + OH)$ from observations $\mathbf{p} = p(K_{-3\sigma}), \dots, p(K_{3\sigma})$

 Using model results, we calculate the likelihood of the observations given each possible rate (L(O|K))

# $\mathbf{L} = \prod_{i} \hat{f}_{-3\sigma}(o_i), ..., \prod_{i} \hat{f}_{3\sigma}(o_i)$

# Constraining $K(NO_2 + OH)$ from observations

- $\mathbf{p} = p(K_{-3\sigma}), ..., p(K_{3\sigma})$
- Using model results, we calculate the likelihood of the observations given each possible rate (L(O|K))
- Bayes Theorem



## Constraining $K(NO_2 + OH)$ from observations

- $\mathbf{p} = p(K_{-3\sigma}), ..., p(K_{3\sigma})$
- Using model results, we calculate the likelihood of the observations given each possible rate (L(O|K))
- Bayes Theorem
- More details at Henderson et al., ACPD 2011

### **Constrained Reaction Rate**



### Uncertainty in $NO_2 + HO^- \rightarrow HNO_3$



- JPL's recommended rate is 11% below IUPAC's
- rate from latest lab data (all at 298 K) is 13% below JPL

### Uncertainty in $NO_2 + HO^- \rightarrow HNO_3$



- JPL's recommended rate is 11% below IUPAC's
- rate from latest lab data (all at 298 K) is 13% below JPL
- this work is 11% below rate from latest lab data at 241 K

### Uncertainty in $NO_2 + HO^- \rightarrow HNO_3$



- JPL's recommended rate is 11% below IUPAC's
- rate from latest lab data (all at 298 K) is 13% below JPL
- this work is 11% below rate from latest lab data at 241 K

### Implications depend on scale of interest

Urban, Regional, Continental: CAMx

- TCEQ SIP Modeling for Houston
- Episode: July 26-Aug 8 2005
- Domains: 36k-Eastern US; 12k-Texas; 4k-Harris County; 2k-Houston
- Focus
  - Max daily 8h average (MDA8)
  - Responsiveness to 20% NOx emission change



### Urban scale (4k - Harris Cnty): Top 4 MDA8

#### **Mixing Ratio**

#### Difference (New - Std)



### Urban scale (4k - Harris Cnty): Top 4 MDA8

#### **Mixing Ratio**

#### Percent (Diff / Std \* 100)



Sensitivity consistent with Cohan et al., 2010 (AE)

### Urban scale (4k - Harris Cnty): Top 4 MDA8

#### **Mixing Ratio**

#### Percent (Diff / Std \* 100)



### 4km - Harris County): $\Delta O_3 @80\% E(NO_x)$

#### Standard Response

#### With Updated Rate



### 4km - Harris County): $\Delta O_3 @80\% E(NO_x)$

#### Standard Response

#### Ratio (New/Std)



 Second order sensitivity lower than Cohan et al., 2010 (AE), most likely because of non-linearity of local-sensitivity

### 4km - Harris County): $\Delta O_3 @80\% E(NO_x)$

#### Standard Response

#### Ratio (New/Std)



### Implications depend on scale of interest

#### Global: GEOS-Chem

- INTEX-NA 2004 campaign
- $2^{\circ} \times 2.5^{\circ}$  with GEOS-5 meteorology
- 1 year spin-up

- Emissions following Hudman JGR 2007
- Focus: Mean ozone change; responsiveness to emissions



### Low Trop Ozone: Influences West Coast



### Low Trop Ozone: Influences West Coast



### Mid Trop Ozone: Influences Interior US



### Mid Trop Ozone: Influences Interior US



### Upper Trop Ozone: Climate Forcing



### Upper Trop Ozone: Climate Forcing



Created a new evaluation framework – published in ACP 2011

- Created a new evaluation framework published in ACP 2011
- Bayesian inference submitted to ACP in July 2011
  - Confirms laboratory based rate reduction
  - Recommends further reduction at low temperature

- Created a new evaluation framework published in ACP 2011
- Bayesian inference submitted to ACP in July 2011
  - Confirms laboratory based rate reduction
  - Recommends further reduction at low temperature
- Implemented new rate in Global, Regional, and Urban scales

- Created a new evaluation framework published in ACP 2011
- Bayesian inference submitted to ACP in July 2011
  - Confirms laboratory based rate reduction
  - Recommends further reduction at low temperature
- Implemented new rate in Global, Regional, and Urban scales
  - Small (< 4%) increases for the maximum daily 8 hour average

- Created a new evaluation framework published in ACP 2011
- Bayesian inference submitted to ACP in July 2011
  - Confirms laboratory based rate reduction
  - Recommends further reduction at low temperature
- Implemented new rate in Global, Regional, and Urban scales
  - Small (< 4%) increases for the maximum daily 8 hour average
  - Medium (> 6 12%) increases for US background concentrations

- Created a new evaluation framework published in ACP 2011
- Bayesian inference submitted to ACP in July 2011
  - Confirms laboratory based rate reduction
  - Recommends further reduction at low temperature
- Implemented new rate in Global, Regional, and Urban scales
  - Small (< 4%) increases for the maximum daily 8 hour average</li>
  - Medium (> 6 12%) increases for US background concentrations
  - Effect increases with altitude

- Created a new evaluation framework published in ACP 2011
- Bayesian inference submitted to ACP in July 2011
  - Confirms laboratory based rate reduction
  - Recommends further reduction at low temperature
- Implemented new rate in Global, Regional, and Urban scales
  - Small (< 4%) increases for the maximum daily 8 hour average</li>
  - Medium (> 6 12%) increases for US background concentrations
  - Effect increases with altitude
- maximum daily 8 hour average results do not account for increased boundary conditions

- Created a new evaluation framework published in ACP 2011
- Bayesian inference submitted to ACP in July 2011
  - Confirms laboratory based rate reduction
  - Recommends further reduction at low temperature
- Implemented new rate in Global, Regional, and Urban scales
  - Small (< 4%) increases for the maximum daily 8 hour average
  - Medium (> 6 12%) increases for US background concentrations
  - Effect increases with altitude
- maximum daily 8 hour average results do not account for increased boundary conditions
- Using the model in a relative sense is largely unaffected

### Acknowledgments

Co-authors on framework and inference papers:

| R. C. Cohen, UC Berkley |
|-------------------------|
| Bill Stockwell, Howard  |
| Golam Sarwar US EPA     |
| Rohit Mathur, US EPA    |
| Havala O.T. Pye, US EPA |
|                         |
|                         |
| Jingqiu Mao, Princeton  |
| Kinetic Pre-Processor   |
|                         |
|                         |

### Acknowledgments (continued)

#### Special thanks for DC8 observational data to:

Melody Avery, Donald Blake, William Brune, Alan Fried, Brian Heikes, Greg Huey, Glen Sachse, Hanwant Singh, Paul Wennberg, and the INTEX team.

#### Support:

This research was supported in part by an appointment to the Research Participation Program at the National Exposure Research Laboratory, U.S. Environmental Protection Agency administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA.

Thanks also to the TCEQ for their freely available model inputs.

#### The Implications of Uncertain NO2 + OH for Ozone and Precursors

#### Barron H. Henderson<sup>1</sup>, Rob W. Pinder<sup>1</sup>, James Crooks<sup>2</sup>, Farhan Akhtar<sup>1</sup>, Havala O.T. Pye<sup>1</sup>, William Vizuete<sup>2</sup>

<sup>1</sup>Atmospheric Modeling and Analysis Division, U.S. EPA
<sup>2</sup>Biostatistics and Bioinformatics Research Core, U.S. EPA
<sup>3</sup>Dept. of Environmental Science and Engineering UNC Chapel Hill

October 26, 2011



barronh@gmail.com



### NO<sub>x</sub>: Lower



### NO<sub>x</sub>: Middle



### NO<sub>x</sub>: Upper



### Spatial NO<sub>x</sub> Sensitivity: Lower



### Spatial NO<sub>x</sub> Sensitivity: Middle



### Spatial NO<sub>x</sub> Sensitivity: Upper

